
1 © 2018 Fujitsu Australia Software Technology

”Divide and Rule”
Partitioning in PostgreSQL11
Rajni Baliyan

2 © 2018 Fujitsu Australia Software Technology

Partitioning?

Subdivide a parent table into a number of smaller child tables/partitions

h
tt
p

s
:/
/w

w
w

.e
le

p
h

in
d

.c
o

m

h
tt

p
s
:/

/w
w

w
.a

m
e

ri
c
a

n
a

n
ti
q

u
a
ri

a
n

.o
rg

/r
e
c
e

n
t-

a
c
q

u
is

it
io

n
s
-n

e
w

s
p

a
p

e
r-

d
e

p
a

rt
m

e
n
t

3 © 2018 Fujitsu Australia Software Technology

Agenda

 Partitioning in PostgreSQL

 Partitioning benefits

When to partition?

 Partitioning exceptions

When not to use partitioning?

 Partitioning limitations in PG10

 Partitioning Improvements in PG11

 Useful commands

 Limitations in PG11

What’s next? PG12…

 PG native partitioning vs pg_partman

 Questions

4 © 2018 Fujitsu Australia Software Technology

Partitioning in PostgreSQL

PG10 PG11

LIST RANGE
partitioning partitioning

East Region
A

B

C

West Region
D
E
F

North Region
G
H
I

2017

2018

2019

HASH
partitioning

h1

h2

h3

Add

 Inheritance partitioning prior to PG10

 Declarative from PG10

5 © 2018 Fujitsu Australia Software Technology

Partitioning benefits

Easy maintenance of big tables.

Address performance issue because of data growth over the period of time.

 Improves query performance.

Address I/O performance issues by keeping partitions on different tablespaces.

Address storage issues- partitions can spin across multiple tablespaces and disk file
systems.

 Transparent to application.

Best suited for applications where data grow is enormous and only recent data is
required – IoT etc.

6 © 2018 Fujitsu Australia Software Technology

Partitioning benefits

FAST

• Queries will access only relevant partitions.
• Reporting queries access most or all of the data in an entire partition
• Better I/O

FLEXIBLE

• Easy maintenance- adding and removing of partition is easy.
• Archiving of historic data.
• Easy backup and restore of partition.
• Add new table as partition of existing partitioned table.

CHEAPER
• Maintenance of INDEXES

ATTENTION!!!

identifying right partitioning type and
partitioning key

7 © 2018 Fujitsu Australia Software Technology

When to partition?

 Some suggestions ,when to partition-

 Table size is very big.

 Data archiving is the requirement.

8 © 2018 Fujitsu Australia Software Technology

When to partition?

 Better I/O- when content of the table needs to be distributed across different types of Storage
devices to achieve better I/O

Tablespace on slow DISKTablespace on SAN
DISK

Sales_archiveSales

Sales_2020 Sales_2019 Sales_2018

Ind_1 Ind_2 Ind_3

Ind_0

Sales_2017

Ind_4

Ind_0

Ind_0 Ind_0Ind_0

9 © 2018 Fujitsu Australia Software Technology

Partitioning exceptions

CHECK and NOT NULL constraints-
 inherit by partitions from partitioned tables.

 CHECK constraints marked “NO INHERIT” are not allowed to be created on partitioned tables.

ONLY to add or drop a constraint-
 supported on partitioned table as long as there are no partitions.

 ONLY will result in an error as adding or dropping constraints on only the partitioned table, when partitions exist, is
not supported

 TRUNCATE ONLY on a partitioned table will always return an error.

Columns should be same in partitioned table and partitions.

10 © 2018 Fujitsu Australia Software Technology

When not to use partitioning?

 Table size is not too big.

 No performance issues faced.

 Application is mostly read/write intensive.

 If partitioning need matches the exceptions.

 Partitioned key is not in WHERE clause of the query.

When INDEX manageability is the known problem.

11 © 2018 Fujitsu Australia Software Technology

Partitioning limitations in PG10

Sales

Sales_2017

Ind_2

PRIMARY KEY

FOREIGN KEY

INDEX

UPDATE

Sales_def

SELECT * from sales where sale_year=2017;

SalesSales_2018

Ind_1

12 © 2018 Fujitsu Australia Software Technology

Partitioning limitations in PG10

 No INDEX, PRIMARY key, UNIQUE constraint, or exclusion constraint spanning all partitions
automatically.

 No support for HASH partitioning.

 No default partition.

 FOREIGN keys referencing partitioned tables are not supported

 No pruning of partitions during query. Results in poor performance.

 No row movement across partitions when doing UPDATE.

 Error while using the ON CONFLICT clause with partitioned tables will cause an error

 Trigger based rules.

13 © 2018 Fujitsu Australia Software Technology

Partitioning Improvements in PG11

Sales

Sales_2017

Ind_1

PRIMARY KEY

FOREIGN KEY

INDEX

UPDATE

Sales_def

SELECT * from sales where sale_year=2017;

Sales

14 © 2018 Fujitsu Australia Software Technology

Partitioning Improvements in PG11

 Support for PRIMARY KEY, FOREIGN KEY, indexes, and triggers on partitioned tables.

 Parent INDEX automatically applicable to partitioned tables.

 Allow a DEFAULT partition for non-matching rows.

 Partition by a hash key- hash partitioning.

 Row movement across partitions on UPDATE

 Improve SELECT performance through enhanced partition elimination strategies during query planning
and execution

 No more trigger functions to be created.

In general, partitions now have most of the capabilities of ordinary tables.

16 © 2018 Fujitsu Australia Software Technology

Let’s start with partitioning- RANGE

 Continuous data distribution based on predicted range of values.

 Create table “emp” and five partition by “RANGE” and insert some rows.

 CREATE TABLE emp (emp_id int, emp_name text, joining_date date not null)

PARTITION BY RANGE (emp_id);

• CREATE TABLE emp_1000 PARTITION OF emp FOR VALUES FROM (1000) TO (3000);

• CREATE TABLE emp_3000 PARTITION OF emp FOR VALUES FROM (3000) TO (5000);

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (1001,'AA','2016-09-30');

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (3501,'AAB','2017-07-5');

17 © 2018 Fujitsu Australia Software Technology

Let’s start with partitioning- RANGE

 Sub-partitioning- adding table with partitions to previously created partitioned table.

 Create parent table-

CREATE TABLE emp_1100(LIKE EMP) PARTITION BY RANGE(EMP_ID);

 Create two partitions-

CREATE TABLE emp_1100_11 PARTITION OF emp_1100 FOR VALUES FROM (11000) TO

(13000);

CREATE TABLE emp_1100_13 PARTITION OF emp_1100 FOR VALUES FROM (13000) TO

(15000);

18 © 2018 Fujitsu Australia Software Technology

Let’s start with partitioning- RANGE

 In PG11-

 PG10-

19 © 2018 Fujitsu Australia Software Technology

PG11- Automatic Index Creation

PG10 PG11

Sales_2019

Sales

Sales_2017 Sales_2018

Ind_1 Ind_2 Ind_3

Ind_0
Sales

Sales_2017 Sales_2018 Sales_2019

Ind_1 Ind_2 Ind_3

Ind_0

Sales_2020

Ind_4

Ind_0

Ind_0 Ind_0Ind_0

20 © 2018 Fujitsu Australia Software Technology

PG11- Automatic Index Creation

 PG10-
 Manual on each partition :

 fails on parent table :

 PG11-
 Query performance will improve as it has

to smaller data set having partition key in WHERE

Clause.

 CREATE INDEX now also possible

on parent.

 Cascade to each existing and new

partitions

• Attach Index- If same INDEX already exist.

• Create Index- if no INDEX .

21 © 2018 Fujitsu Australia Software Technology

PG11- Foreign Key Support

 PG10- No column as FOREIGN KEY in partitioned table

 PG11: FOREIGN KEYs are allowed. But no FK reference to the partitioned master table.

22 © 2018 Fujitsu Australia Software Technology

PG11- Row migration on UPDATE

 UPDATE statements can move a row across partition boundaries.

 This occurs when the update happens to affect a column that participates in defining the
boundaries.

 Frequently doing so might defeat the purpose of partitioning.

 Not available in PG10. Give error-

 In PG11- moves rows across partitions.

23 © 2018 Fujitsu Australia Software Technology

PG11- Hash partitioning

 Hash partitioning is a method to separate out information in a randomized way rather than
putting the data in the form of groups unlike RANGE partitioning.

 Divide rows (more or less) equally into multiple partitions

Much useful for data ware house kind of application.

 Partitioning is based on module and remainder.

 An INSERT statement that does not match the hash value will fail when storing tuples directly on
a partition.

24 © 2018 Fujitsu Australia Software Technology

PG11- Hash partitioning

 SYNTAX:

CREATE TABLE <table_name> (col1 numeric, col2 text) PARTITION BY hash (hash_key);

CREATE TABLE part1_name PARTITION OF <table_name> FOR VALUES WITH (MODULUS 4,

REMAINDER 0);

 Note:

 MODULUS is number of partitions, and REMAINDER is number, 0 or more, but less than MODULUS

• MODULUS clause value > REMAINDER clause

• Number of partitions >= MODULUS value, else Insert error

25 © 2018 Fujitsu Australia Software Technology

PG11- Hash partitioning

 Advantages of HASH partitioning over RANGE partitioning.

 Not aware beforehand how much data will map into a given range.

 The sizes of range partitions would differ quite substantially or would be difficult to balance manually

 Avoid data skew in partitions.

 Performance features such as parallel DML, partition pruning, and partition-wise joins are important

 Maximize I/O throughput.

 Partition pruning and partition-wise joins on a partitioning key are important.

26 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Default partition should exist prior to insert rows else result in error.

 With default partition- rows can be inserted outside of the defined range.

 It can be called as "catch all" partition

 Syntax:
 CREATE TABLE emp_default PARTITION OF emp DEFAULT;

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (940305,'AAS','2014-03-11');

27 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Trying to create partition for inserted row- will fail

 Create new partition for inserted rows –

 Detach default Create new Move data Attach new Reattach default

• ALTER TABLE emp DETACH PARTITION emp_default;

• CREATE TABLE emp_def_pr1 (like emp);

• INSERT INTO emp_def_pr1 (SELECT * FROM emp_default);

28 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Attach newly created partition to the parent ‘emp’ table.

 ALTER TABLE emp ATTACH PARTITION emp_def_pr1 FOR VALUES FROM (800000) TO (1000000);

 New data inserted for defined bounds will move to new partition.

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (890305,'AAT','2018-07-21');

 SELECT * FROM emp;

29 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Re-attach default partition for future use.

 ALTER TABLE emp ATTACH PARTITION emp_default DEFAULT;

 \d+ emp

 Test: INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (890305,'AAT','2018-07-21');

30 © 2018 Fujitsu Australia Software Technology

PG11- Partition pruning

 Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables.

 Significantly cheaper plan when enabled.

 This is possible by using parameter “enable_partition_pruning”

 Can be set at session level-

• SET enable_partition_pruning=on; -- on’ by default

31 © 2018 Fujitsu Australia Software Technology

PG11- Partition pruning

With partition pruning enabled, the planner will examine the definition of each partition and
will include partitions meeting the query's WHERE clause.

 When enable_partition_pruning=on

32 © 2018 Fujitsu Australia Software Technology

PG11- Partition pruning

 Without partition pruning, same query will scan each partition.

 When enable_partition_pruning=off

33 © 2018 Fujitsu Australia Software Technology

Useful commands

 Check table and partition description
 \d+ name

 DETACH an existing partition.
 ALTER TABLE name DETACH PARTITION partition_name;

 ATTACH a new partition.
 ALTER TABLE name ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec |

DEFAULT };

 How rows are distributed?
 SELECT * FROM emp, LATERAL (SELECT relname FROM pg_class WHERE pg_class.oid =

emp.tableoid) AS table_name (emp) GROUP BY emp, emp_id, emp_name;

Which partition contains row?
 SELECT relname FROM pg_class WHERE oid = (SELECT tableoid FROM <tablename> where

<condition>);

34 © 2018 Fujitsu Australia Software Technology

Limitations in PG11

 There is no way to create an exclusion constraint spanning all partitions- possible on individual partitions.

 FOREIGN keys referencing partitioned tables are not supported.

 When an UPDATE causes a row to move from one partition to another, there is a chance that another
concurrent UPDATE or DELETE misses this row.

 BEFORE ROW triggers, if necessary, must be defined on individual partitions, not the partitioned table.

 Mixing temporary and permanent relations in the same partition tree is not allowed.

35 © 2018 Fujitsu Australia Software Technology

What’s next? PG12…

 There’s still more to do here in the future.

 At the moment execution-time pruning only performs pruning of Append nodes. May be in
future we can have pruning for MergeAppend or for ModifyTable nodes (UPDATE/DELETE)

 Enhancement in partition pruning performance and views.

 Never-the-less what we have for PG11 is a significant improvement over PG10!

36 © 2018 Fujitsu Australia Software Technology

PG native partitioning vs pg_partman

Feature 9.6 PG 10 PG 11 pg_partman

Declarative partitioning

INSERT- auto routing * using triggers

UPDATE –auto routing

Foreign Key *

Unique Indexes

Default partitioning * on parent table

Hash partitioning

Partition level aggregation /joins *
constraint should match both sides

Partition pruning

Trigger based

Automatic child creation * using triggers

Automatic privileges transfer to
new and existing child

 * using separate
function

