
1 © 2018 Fujitsu Australia Software Technology

”Divide and Rule”
Partitioning in PostgreSQL11
Rajni Baliyan



2 © 2018 Fujitsu Australia Software Technology

Partitioning?

Subdivide a parent table into a number of smaller child tables/partitions

h
tt
p

s
:/
/w

w
w

.e
le

p
h

in
d

.c
o

m

h
tt

p
s
:/

/w
w

w
.a

m
e

ri
c
a

n
a

n
ti
q

u
a
ri

a
n

.o
rg

/r
e
c
e

n
t-

a
c
q

u
is

it
io

n
s
-n

e
w

s
p

a
p

e
r-

d
e

p
a

rt
m

e
n
t



3 © 2018 Fujitsu Australia Software Technology

Agenda

 Partitioning in PostgreSQL

 Partitioning benefits

When to partition?

 Partitioning exceptions

When not to use partitioning?

 Partitioning limitations in PG10

 Partitioning Improvements in PG11

 Useful commands

 Limitations in PG11

What’s next? PG12…

 PG native partitioning vs pg_partman

 Questions



4 © 2018 Fujitsu Australia Software Technology

Partitioning in PostgreSQL

PG10                                           PG11

LIST                                          RANGE
partitioning                           partitioning

East Region
A

B

C

West Region
D
E
F

North Region
G
H
I

2017

2018

2019

HASH 
partitioning

h1

h2

h3

Add

 Inheritance partitioning prior to PG10

 Declarative from PG10



5 © 2018 Fujitsu Australia Software Technology

Partitioning benefits

Easy maintenance of big tables.

Address performance issue because of  data growth over the period of time.

 Improves query performance.

Address I/O performance issues by keeping partitions on different tablespaces.

Address storage issues- partitions can spin across multiple tablespaces and disk file 
systems.

 Transparent to application.

Best suited for applications where data grow is enormous and only recent data is 
required – IoT etc.



6 © 2018 Fujitsu Australia Software Technology

Partitioning benefits

FAST

• Queries will access only relevant partitions.
• Reporting queries access most or all of the data in an entire partition
• Better I/O

FLEXIBLE

• Easy maintenance- adding and removing of partition is easy.
• Archiving of historic data.
• Easy backup and restore of partition.
• Add new table as partition of existing partitioned table.

CHEAPER
• Maintenance of INDEXES

ATTENTION!!!

identifying right partitioning type and 
partitioning key



7 © 2018 Fujitsu Australia Software Technology

When to partition?

 Some suggestions ,when to partition-

 Table size is very big.

 Data archiving is the requirement.



8 © 2018 Fujitsu Australia Software Technology

When to partition?

 Better I/O- when content of the table needs to be distributed across different types of Storage 
devices to achieve better I/O

Tablespace on slow DISKTablespace on SAN 
DISK

Sales_archiveSales

Sales_2020 Sales_2019 Sales_2018

Ind_1 Ind_2 Ind_3

Ind_0

Sales_2017

Ind_4

Ind_0

Ind_0 Ind_0Ind_0



9 © 2018 Fujitsu Australia Software Technology

Partitioning exceptions

CHECK and NOT NULL constraints-
 inherit by partitions from partitioned tables.

 CHECK constraints marked “NO INHERIT” are not allowed to be created on partitioned tables.

ONLY to add or drop a constraint-
 supported on partitioned table as long as there are no partitions.

 ONLY will result in an error as adding or dropping constraints on only the partitioned table, when partitions exist, is 
not supported

 TRUNCATE ONLY on a partitioned table will always return an error.

Columns should be same in partitioned table and partitions.



10 © 2018 Fujitsu Australia Software Technology

When not to use partitioning?

 Table size is not too big.

 No performance issues faced.

 Application is mostly read/write intensive.

 If partitioning need matches the exceptions.

 Partitioned key is not in WHERE clause of the query.

When INDEX manageability is the known problem.



11 © 2018 Fujitsu Australia Software Technology

Partitioning limitations in PG10

Sales

Sales_2017

Ind_2

PRIMARY KEY

FOREIGN KEY

INDEX

UPDATE

Sales_def

SELECT * from sales where sale_year=2017;

SalesSales_2018

Ind_1



12 © 2018 Fujitsu Australia Software Technology

Partitioning limitations in PG10

 No INDEX, PRIMARY key, UNIQUE constraint, or exclusion constraint spanning all partitions 
automatically.

 No support for HASH partitioning.

 No default partition.

 FOREIGN keys referencing partitioned tables are not supported

 No pruning of partitions during query. Results in poor performance.

 No row movement across partitions when doing UPDATE.

 Error while using the ON CONFLICT clause with partitioned tables will cause an error

 Trigger based rules.



13 © 2018 Fujitsu Australia Software Technology

Partitioning Improvements in PG11

Sales

Sales_2017

Ind_1

PRIMARY KEY

FOREIGN KEY

INDEX

UPDATE

Sales_def

SELECT * from sales where sale_year=2017;

Sales



14 © 2018 Fujitsu Australia Software Technology

Partitioning Improvements in PG11

 Support for PRIMARY KEY, FOREIGN KEY, indexes, and triggers on partitioned tables.

 Parent INDEX automatically applicable to partitioned tables.

 Allow a DEFAULT partition for non-matching rows.

 Partition by a hash key- hash partitioning. 

 Row movement across partitions on UPDATE 

 Improve SELECT performance through enhanced partition elimination strategies during query planning 
and execution

 No more trigger functions to be created. 

In general, partitions now have most of the capabilities of ordinary tables.



16 © 2018 Fujitsu Australia Software Technology

Let’s start with partitioning- RANGE

 Continuous data distribution based on predicted range of values.

 Create table “emp” and five partition by “RANGE” and insert some rows.

 CREATE TABLE emp ( emp_id int, emp_name text, joining_date date not null ) 

PARTITION BY RANGE (emp_id);

• CREATE TABLE emp_1000 PARTITION OF emp FOR VALUES FROM (1000) TO (3000);

• CREATE TABLE emp_3000 PARTITION OF emp FOR VALUES FROM (3000) TO (5000);

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (1001,'AA','2016-09-30');

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (3501,'AAB','2017-07-5');



17 © 2018 Fujitsu Australia Software Technology

Let’s start with partitioning- RANGE

 Sub-partitioning- adding table with partitions to previously created partitioned table.

 Create parent table-

CREATE TABLE emp_1100(LIKE EMP) PARTITION BY RANGE(EMP_ID);

 Create two partitions-

CREATE TABLE emp_1100_11 PARTITION OF emp_1100 FOR VALUES FROM (11000) TO 

(13000);

CREATE TABLE emp_1100_13 PARTITION OF emp_1100 FOR VALUES FROM (13000) TO 

(15000);



18 © 2018 Fujitsu Australia Software Technology

Let’s start with partitioning- RANGE

 In PG11-

 PG10-



19 © 2018 Fujitsu Australia Software Technology

PG11- Automatic Index Creation

PG10                                                                     PG11

Sales_2019

Sales

Sales_2017 Sales_2018

Ind_1 Ind_2 Ind_3

Ind_0
Sales

Sales_2017 Sales_2018 Sales_2019

Ind_1 Ind_2 Ind_3

Ind_0

Sales_2020

Ind_4

Ind_0

Ind_0 Ind_0Ind_0



20 © 2018 Fujitsu Australia Software Technology

PG11- Automatic Index Creation

 PG10-
 Manual on each partition :

 fails on parent table  :

 PG11-
 Query performance will improve as it has

to smaller data set having partition key in WHERE 

Clause.

 CREATE INDEX now also possible

on parent. 

 Cascade to each existing and new

partitions

• Attach Index- If same INDEX already exist.

• Create Index- if no INDEX .



21 © 2018 Fujitsu Australia Software Technology

PG11- Foreign Key Support

 PG10- No column as FOREIGN KEY in partitioned table

 PG11: FOREIGN KEYs are allowed. But no FK reference to the partitioned master table.



22 © 2018 Fujitsu Australia Software Technology

PG11- Row migration on UPDATE

 UPDATE statements can move a row across partition boundaries.

 This occurs when the update happens to affect a column that participates in defining the 
boundaries. 

 Frequently doing so might defeat the purpose of partitioning.

 Not available in PG10. Give error-

 In PG11- moves rows across partitions.



23 © 2018 Fujitsu Australia Software Technology

PG11- Hash partitioning

 Hash partitioning is a method to separate out information in a randomized way rather than 
putting the data in the form of groups unlike RANGE partitioning.

 Divide rows (more or less) equally into multiple partitions

Much useful for data ware house kind of application.

 Partitioning is based on module and remainder.

 An INSERT statement that does not match the hash value will fail when storing tuples directly on 
a partition.



24 © 2018 Fujitsu Australia Software Technology

PG11- Hash partitioning

 SYNTAX: 

CREATE TABLE <table_name> (col1 numeric, col2 text) PARTITION BY hash (hash_key);

CREATE TABLE part1_name PARTITION OF <table_name> FOR VALUES WITH (MODULUS 4, 

REMAINDER 0);

 Note:

 MODULUS is number of partitions, and REMAINDER is number, 0 or more, but less than MODULUS

• MODULUS clause value > REMAINDER clause

• Number of partitions >= MODULUS value, else Insert error



25 © 2018 Fujitsu Australia Software Technology

PG11- Hash partitioning

 Advantages of HASH partitioning over RANGE partitioning.

 Not aware beforehand how much data will map into a given range.

 The sizes of range partitions would differ quite substantially or would be difficult to balance manually

 Avoid data skew in partitions.

 Performance features such as parallel DML, partition pruning, and partition-wise joins are important

 Maximize I/O throughput.

 Partition pruning and partition-wise joins on a partitioning key are important.



26 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Default partition should exist prior to insert rows else result in error.

 With default partition- rows can be inserted outside of the defined range.

 It can be called as "catch all" partition

 Syntax: 
 CREATE TABLE emp_default PARTITION OF emp DEFAULT;

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (940305,'AAS','2014-03-11');



27 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Trying to create partition for inserted row- will fail

 Create new partition for inserted rows –

 Detach default Create new Move data Attach new  Reattach default

• ALTER TABLE emp  DETACH PARTITION emp_default;

• CREATE TABLE emp_def_pr1 (like emp);

• INSERT INTO emp_def_pr1 (SELECT * FROM emp_default);



28 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Attach newly created partition to the parent ‘emp’ table.

 ALTER TABLE emp ATTACH PARTITION emp_def_pr1 FOR VALUES FROM (800000) TO (1000000);

 New data inserted for defined bounds will move to new partition.

 INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (890305,'AAT','2018-07-21');

 SELECT * FROM emp;



29 © 2018 Fujitsu Australia Software Technology

PG11- DEFAULT partition

 Re-attach default partition for future use.

 ALTER TABLE emp ATTACH PARTITION emp_default DEFAULT;

 \d+ emp

 Test: INSERT INTO EMP (emp_id,emp_name,joining_date) VALUES (890305,'AAT','2018-07-21');



30 © 2018 Fujitsu Australia Software Technology

PG11- Partition pruning

 Partition pruning is a query optimization technique that improves performance for declaratively 
partitioned tables.

 Significantly cheaper plan when enabled.

 This is possible by using parameter “enable_partition_pruning”

 Can be set at session level-

• SET enable_partition_pruning=on;   -- on’ by default



31 © 2018 Fujitsu Australia Software Technology

PG11- Partition pruning

With partition pruning enabled, the planner will examine the definition of each partition and 
will include partitions meeting the query's WHERE clause.

 When enable_partition_pruning=on



32 © 2018 Fujitsu Australia Software Technology

PG11- Partition pruning

 Without partition pruning, same query will scan each partition.

 When enable_partition_pruning=off



33 © 2018 Fujitsu Australia Software Technology

Useful commands

 Check table and partition description
 \d+ name

 DETACH an existing partition.
 ALTER TABLE name DETACH PARTITION partition_name;

 ATTACH a new partition.
 ALTER TABLE name  ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | 

DEFAULT };

 How rows are distributed?
 SELECT * FROM emp, LATERAL (SELECT relname FROM pg_class WHERE pg_class.oid = 

emp.tableoid) AS table_name (emp) GROUP BY emp, emp_id, emp_name;

Which partition contains row?
 SELECT relname FROM pg_class WHERE oid = (SELECT tableoid FROM <tablename> where 

<condition>);



34 © 2018 Fujitsu Australia Software Technology

Limitations in PG11

 There is no way to create an exclusion constraint spanning all partitions- possible on individual partitions.

 FOREIGN keys referencing partitioned tables are not supported. 

 When an UPDATE causes a row to move from one partition to another, there is a chance that another 
concurrent UPDATE or DELETE misses this row. 

 BEFORE ROW triggers, if necessary, must be defined on individual partitions, not the partitioned table.

 Mixing temporary and permanent relations in the same partition tree is not allowed. 



35 © 2018 Fujitsu Australia Software Technology

What’s next? PG12…

 There’s still more to do here in the future. 

 At the moment execution-time pruning only performs pruning of Append nodes. May be in 
future we can have pruning for MergeAppend or for ModifyTable nodes (UPDATE/DELETE)

 Enhancement in partition pruning performance and views.

 Never-the-less what we have for PG11 is a significant improvement over PG10!



36 © 2018 Fujitsu Australia Software Technology

PG native partitioning vs pg_partman

Feature 9.6 PG 10 PG 11               pg_partman

Declarative partitioning    

INSERT- auto routing    * using triggers

UPDATE –auto routing    

Foreign Key   * 

Unique Indexes   

Default partitioning    * on parent table

Hash partitioning    

Partition level aggregation /joins   *
constraint should match both sides



Partition pruning    

Trigger based    

Automatic child creation    * using triggers

Automatic privileges transfer to
new and existing child

   * using separate           
function


